Warming climate extends dryness-controlled areas of terrestrial carbon sequestration

نویسندگان

  • Chuixiang Yi
  • Suhua Wei
  • George Hendrey
چکیده

At biome-scale, terrestrial carbon uptake is controlled mainly by weather variability. Observational data from a global monitoring network indicate that the sensitivity of terrestrial carbon sequestration to mean annual temperature (T) breaks down at a threshold value of 16°C, above which terrestrial CO₂ fluxes are controlled by dryness rather than temperature. Here we show that since 1948 warming climate has moved the 16°C T latitudinal belt poleward. Land surface area with T > 16°C and now subject to dryness control rather than temperature as the regulator of carbon uptake has increased by 6% and is expected to increase by at least another 8% by 2050. Most of the land area subjected to this warming is arid or semiarid with ecosystems that are highly vulnerable to drought and land degradation. In areas now dryness-controlled, net carbon uptake is ~27% lower than in areas in which both temperature and dryness (T < 16°C) regulate plant productivity. This warming-induced extension of dryness-controlled areas may be triggering a positive feedback accelerating global warming. Continued increases in land area with T > 16°C has implications not only for positive feedback on climate change, but also for ecosystem integrity and land cover, particularly for pastoral populations in marginal lands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر جنگل‌کاری با گونه‌های اکالیپتوس (Eucalyptus camaldulensis Dehnh.) و بادام‌کوهی (Amygdalus scoparia Spach.) بر ترسیب کربن و برخی از ویژگی‌های فیزیکی و شیمیایی خاک (مطالعۀ موردی: پارک جنگلی دشت مازۀ دهدشت)

Today, climate change and global warming caused by the emission of greenhouse gases is a big challenge to the world, especially in arid and semi-arid area. Afforestation is the most effective strategy to absorb carbon dioxide in terrestrial ecosystems and reduce global warming of the earth. The purpose of this study is to evaluate the effects of planting Eucalyptus camaldulensis and Amygdalus s...

متن کامل

MIT Joint Program on the Science and Policy of Global Change Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle

A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these interactions. Here we explore how carbon/ni...

متن کامل

Terrestrial nitrogen-carbon cycle interactions at the global scale.

Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitroge...

متن کامل

Carbon sequestration potential in soil and stand of Nitraria schoberi L.

Arid and semi-arid lands cover around one-third of the world's terrestrial expanse and their widespread plantdistributions provide these areas with a high potential for sequestering carbon. Vegetation management for developingshrub or tree species in arid and semi-arid regions is one inexpensive and multi-purpose approach for decreasing CO2.This study assessed the potential of carbon sequestrat...

متن کامل

Investigation of Carbon Sequestration Potential in Four Species Including Atriplex canescens, Haloxylon persicum, Artemisia sieberi and Agropyron desertorum (Case Study: Zarandieh, Saveh, Iran)

Climate changes and global warming are considered as very important challenges of sustainable development. Carbon sequestration is the easiest and cheapest way to reduce the greenhouse gases, especially carbon which constitutes the largest portion of them. In the present study, the potential of carbon sequestration in four plant species of Atriplex canescens, Haloxylon persicum, Artemisia siebe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014